Energy transfer in the major intrinsic light-harvesting complex from Amphidinium carterae.
نویسندگان
چکیده
Carbonyl carotenoids are important constituents of the antenna complexes of marine organisms. These carotenoids possess an excited state with a charge-transfer character (intramolecular charge transfer state, ICT), but many details of the carotenoid to chlorophyll energy transfer mechanisms are as yet poorly understood. Here, we employ femtosecond transient absorption spectroscopy to study energy transfer pathways in the intrinsic light-harvesting complex (LHC) of dinoflagellates, which contains the carbonyl carotenoid peridinin. Carotenoid to chlorophyll energy transfer efficiency is about 90% in the 530-550 nm region, where the peridinin S2 state transfers energy with an efficiency of 25-50%. The rest proceeds via the S1/ICT channel, and the major S1/ICT-mediated energy transfer pathway utilizes the relaxed S1/ICT state and occurs with a time constant of 2.6 ps. Below 525 nm, the overall energy transfer efficiency drops because of light absorption by another carotenoid, diadinoxanthin, that contributes only marginally to energy transfer. Instead, its role is likely to be photoprotection. In addition to the peridinin-Chl-a energy transfer, it was shown that energy transfer also occurs between the two chlorophyll species in LHC, Chl-c2, and Chl-a. The time constant characterizing the Chl-c2 to Chl-a energy transfer is 1.4 ps. The results demonstrate that the properties of the S1/ICT state specific for carbonyl carotenoids is the key to ensure the effective harvesting of photons in the 500-600 nm region, which is of vital importance to underwater organisms.
منابع مشابه
Structural basis of light harvesting by carotenoids: peridinin-chlorophyll-protein from Amphidinium carterae.
Peridinin-chlorophyll-protein, a water-soluble light-harvesting complex that has a blue-green absorbing carotenoid as its main pigment, is present in most photosynthetic dinoflagellates. Its high-resolution (2.0 angstrom) x-ray structure reveals a noncrystallographic trimer in which each polypeptide contains an unusual jellyroll fold of the alpha-helical amino- and carboxyl-terminal domains. Th...
متن کاملInter-pigment interactions in the peridinin chlorophyll protein studied by global and target analysis of time resolved absorption spectra
Inter-pigment interactions define the functioning of light-harvesting protein complexes. To describe the particularly complex molecular dynamics and interactions of peridinin and chlorophyll in the peridinin chlorophyll protein of Amphidinium carterae, we applied global and target analysis to a series of ultrafast transient absorption experiments. We have created and validated a model that cons...
متن کاملExcitation transfer in the peridinin-chlorophyll-protein of Amphidinium carterae.
Peridinin-chlorophyll-protein (PCP) is a unique light-harvesting protein that uses carotenoids as its primary light-absorbers. This paper theoretically investigates excitation transfer between carotenoids and chlorophylls in PCP of the dinoflagellate Amphidinium carterae. Calculations based on a description of the electronic states of the participating chromophores and on the atomic level struc...
متن کاملMonitoring fluorescence of individual chromophores in peridinin-chlorophyll-protein complex using single molecule spectroscopy.
Single molecule spectroscopy experiments are reported for native peridinin-chlorophyll a-protein (PCP) complexes, and three reconstituted light-harvesting systems, where an N-terminal construct of native PCP from Amphidinium carterae has been reconstituted with chlorophyll (Chl) mixtures: with Chl a, with Chl b and with both Chl a and Chl b. Using laser excitation into peridinin (Per) absorptio...
متن کاملGenetic Diversity, Morphological Uniformity and Polyketide Production in Dinoflagellates (Amphidinium, Dinoflagellata)
Dinoflagellates are an intriguing group of eukaryotes, showing many unusual morphological and genetic features. Some groups of dinoflagellates are morphologically highly uniform, despite indications of genetic diversity. The species Amphidinium carterae is abundant and cosmopolitan in marine environments, grows easily in culture, and has therefore been used as a 'model' dinoflagellate in resear...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 45 28 شماره
صفحات -
تاریخ انتشار 2006